Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
ACS Pharmacol Transl Sci ; 7(4): 1032-1042, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633598

RESUMO

The COVID-19 pandemic revealed the need for therapeutic and pharmaceutical molecule development in a short time with different approaches. Although boosting immunological memory by vaccination was the quickest and robust strategy, still medication is required for the immediate treatment of a patient. A popular approach is the mining of new therapeutic molecules. Peptide-based drug candidates are also becoming a popular avenue. To target whole pathogenic viral agents, peptide libraries can be employed. With this motivation, we have used the 12mer M13 phage display library for selecting SARS-CoV-2 targeting peptides as potential neutralizing molecules to prevent viral infections. Panning was applied with four iterative cycles to select SARS-CoV-2 targeting phage particles displaying 12-amino acid-long peptides. Randomly selected peptide sequences were synthesized by a solid-state peptide synthesis method. Later, selected peptides were analyzed by the quartz crystal microbalance method to characterize their molecular interaction with SARS-CoV-2's S protein. Finally, the neutralization activity of the selected peptides was probed with an in-house enzyme-linked immunosorbent assay. The results showed that scpep3, scpep8, and scpep10 peptides have both binding and neutralizing capacity for S1 protein as a candidate for therapeutic molecule. The results of this study have a translational potential with future in vivo and human studies.

2.
ACS Synth Biol ; 13(4): 1026-1037, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38588603

RESUMO

In the era of the COVID-19 pandemic, the significance of point-of-care (POC) diagnostic tools has become increasingly vital, driven by the need for quick and precise virus identification. RNA-based sensors, particularly toehold sensors, have emerged as promising candidates for POC detection systems due to their selectivity and sensitivity. Toehold sensors operate by employing an RNA switch that changes the conformation when it binds to a target RNA molecule, resulting in a detectable signal. This review focuses on the development and deployment of RNA-based sensors for POC viral RNA detection with a particular emphasis on toehold sensors. The benefits and limits of toehold sensors are explored, and obstacles and future directions for improving their performance within POC detection systems are presented. The use of RNA-based sensors as a technology for rapid and sensitive detection of viral RNA holds great potential for effectively managing (dealing/coping) with present and future pandemics in resource-constrained settings.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Pandemias , COVID-19/diagnóstico , RNA Viral/genética , Sistemas Automatizados de Assistência Junto ao Leito , Técnicas Biossensoriais/métodos , Teste para COVID-19
3.
ACS Med Chem Lett ; 14(12): 1821-1826, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116434

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder resulting from a significant amplification of CAG repeats in exon 1 of the Huntingtin (Htt) gene. More than 36 CAG repeats result in the formation of a mutant Htt (mHtt) protein. These amino-terminal mHtt fragments lead to the formation of misfolded proteins, which then form aggregates in the relevant brain regions. Therapies that can delay the progression of the disease are imperative to halting the course of the disease. Peptide-based drug therapies provide such a platform. Inhibitory peptides were screened against monomeric units of both wild type (Htt(Q25)) and mHtt fragments, Htt(Q46) and Htt(Q103). Fibril kinetics was studied by utilizing the Thioflavin T (ThT) assay. Atomic force microscopy was also used to study the influence of the peptides on fibril formation. These experiments demonstrate that the chosen peptides suppress the formation of fibrils in mHtt proteins and can provide a therapeutic lead for further optimization and development.

4.
ACS Omega ; 8(39): 36218-36227, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810695

RESUMO

Protein glycosylation is one of the most crucial and common post-translational modifications. It plays a fate-determining role and can alter many properties of proteins. Here, we engineered a Campylobacter jejuni N-linked glycosylation machinery by overexpressing one of the core glycosylation-related enzymes, PgIB, to increase the glycosylation rate. It has been previously shown that by utilizing N-linked glycosylation, certain recombinant proteins have been furnished with improved features, such as stability and solubility. We utilized N-linked glycosylation using an engineered glycosylation pathway to glycosylate a model enzyme, the alkaline phosphatase (ALP) enzyme in Escherichia coli. We have investigated the effects of glycosylation on enzyme properties. Considering the glycosylation mechanism is highly dependent on accessibility of the glycosylation tag, ALP constructs carrying the glycosylation tag at different locations of the gene have been constructed, and glycosylation rates have been calculated. Our results showed that, upon glycosylation, ALP features in terms of thermostability, proteolytic stability, tolerance to suboptimal pH, and denaturing conditions are dramatically improved. The results indicated that the N-linked glycosylation mechanism can be employed for protein manipulation for industrial applications.

5.
ACS Synth Biol ; 12(9): 2505-2515, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37672348

RESUMO

The development of mRNA-based therapeutics centers around the natural functioning of mRNA molecules to provide the genetic information required for protein translation. To improve the efficacy of these therapeutics and minimize side effects, researchers can focus on the features of mRNA itself or the properties of the delivery agent to achieve the desired response. The tools considered for mRNA manipulation can be improved in terms of targetability, tunability, and translatability to medicine. While ongoing studies are dedicated to improving conventional approaches, innovative approaches can also be considered to unleash the full potential of mRNA-based therapeutics. Here, we discuss the opportunities that emerged from introducing synthetic biology to mRNA therapeutics. It includes a discussion of modular self-assembled mRNA nanoparticles, logic gates on a single mRNA molecule, and other possibilities.


Assuntos
Nanopartículas , Biologia Sintética , Humanos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Pesquisadores
6.
ACS Chem Neurosci ; 14(19): 3609-3621, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37638647

RESUMO

Peptide therapeutics are robust and promising molecules for treating diverse disease conditions. These molecules can be developed from naturally occurring or mimicking native peptides, through rational design and peptide libraries. We developed a new platform for the rapid screening of the peptide therapeutics for disease targets. In the course of the study, we aimed to employ our platform to screen a new generation of peptide therapeutic candidates against aggregation-prone protein targets. Two peptide drug candidates were screened for protein aggregation-prone diseases, namely, Parkinson's and Alzheimer's diseases. Currently, there are several therapeutic applications that are only effective in masking or slowing down symptom development. Nonetheless, different approaches are being developed for inhibiting amyloid aggregation in the secondary nucleation phase, which is critical for amyloid fibril formation. Instead of targeting secondary nucleated protein structures, we tried to inhibit the aggregation of monomeric amyloid units as a novel approach for halting the disease condition. To achieve this, we combined yeast surface display and phage display library platforms. We expressed α-synuclein, amyloid ß40, and amyloid ß42 on the yeast surface, and we selected peptides by using phage display library. After iterative biopanning cycles optimized for yeast cells, several peptides were selected for interaction studies. All of the peptides have been used for in vitro characterization methods, which are quartz crystal microbalance-dissipation (QCM-D) measurement, atomic force microscopy (AFM) imaging, dot-blotting, and ThT assay, and some of them have yielded promising results in blocking fibrillization. The rest of the peptides, although, interacted with amyloid units which made them usable as a sensor molecule candidate. Therefore, peptides selected by yeast surface display and phage display library combination are good choice for diverse disease-prone molecule inhibition, particularly those inhibiting fibrillization. Additionally, these selected peptides can be used as drugs and sensors to detect diseases quickly and halt disease progression.


Assuntos
Bacteriófagos , Doenças Neurodegenerativas , Humanos , Saccharomyces cerevisiae/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Biblioteca de Peptídeos , Amiloide , Proteínas Amiloidogênicas , Bacteriófagos/metabolismo
7.
Biosens Bioelectron ; 223: 115035, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571991

RESUMO

The number of synthetic biology-based solutions employed in the medical industry is growing every year. The whole cell biosensors being one of them, have been proven valuable tools for developing low-cost, portable, personalized medicine alternatives to conventional techniques. Based on this concept, we targeted one of the major health problems in the world, Chronic Kidney Disease (CKD). To do so, we developed two novel biosensors for the detection of two important renal biomarkers: urea and uric acid. Using advanced gene expression control strategies, we improved the operational range and the response profiles of each biosensor to meet clinical specifications. We further engineered these systems to enable multiplexed detection as well as an AND-logic gate operating system. Finally, we tested the applicability of these systems and optimized their working dynamics inside complex medium human blood serum. This study could help the efforts to transition from labor-intensive and expensive laboratory techniques to widely available, portable, low-cost diagnostic options.


Assuntos
Técnicas Biossensoriais , Insuficiência Renal Crônica , Humanos , Técnicas Biossensoriais/métodos , Insuficiência Renal Crônica/diagnóstico , Biomarcadores
8.
Adv Mater Interfaces ; : 2201126, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36248312

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously infecting people all around the world since its outbreak in 2019. Studies for numerous infection detection strategies are continuing. The sensitivity of detection methods is crucial to separate people with mild infections from people who are asymptomatic. In this sense, a strategy that would help to capture and isolate the SARS-CoV-2 virus prior to tests can be effective and beneficial. To this extent, genetically engineered biomaterials grounding from the biofilm protein of Escherichia coli are beneficial due to their robustness and adaptability to various application areas. Through functionalizing the E. coli biofilm protein, diverse properties can be attained such as enzyme display, nanoparticle production, and medical implant structures. Here, E. coli species are employed to express major curli protein CsgA and Griffithsin (GRFT) as fusion proteins, through a complex formation using SpyTag and SpyCatcher domains. In this study, a complex system with a CsgA scaffold harboring the affinity of GRFT against Spike protein to capture and isolate SARS-CoV-2 virus is successfully developed. It is shown that the hybrid recombinant protein can dramatically increase the sensitivity of currently available lateral flow assays for Sars-CoV-2 diagnostics.

9.
Methods Mol Biol ; 2538: 25-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951291

RESUMO

The structure and the functionality of biofilm proteins, the main components of the extracellular matrix, can be tuned by protein engineering. The use of binding kinetics data has been demonstrated in the characterization of recombinantly produced biofilm proteins to control their behavior on certain surfaces or under certain conditions. Quartz crystal microbalance with dissipation monitoring (QCM-D) allows measuring the change in resonance frequency and the energy loss and distribution upon the interaction of molecules with the surface. The characterization of the molecular assembly of curli biofilm proteins on different surfaces using QCM-D is presented here as a detailed protocol. The experimental procedure detailed in this chapter can be applied and modified for other biofilm proteins or subunits to determine their surface adsorption and kinetic binding characteristics.


Assuntos
Biofilmes , Técnicas de Microbalança de Cristal de Quartzo , Adsorção , Cinética , Proteínas , Quartzo , Técnicas de Microbalança de Cristal de Quartzo/métodos , Propriedades de Superfície
10.
Small ; 18(26): e2200537, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35567331

RESUMO

The demand for highly efficient cancer diagnostic tools increases alongside the high cancer incidence nowadays. Moreover, there is an imperative need for novel cancer treatment therapies that lack the side effects of conventional treatment options. Developments in this aspect employ magnetic nanoparticles (MNPs) for biomedical applications due to their stability, biocompatibility, and magnetic properties. Certain organisms, including many bacteria, can synthesize magnetic nanocrystals, which help their spatial orientation and survival by sensing the earth's geomagnetic field. This work aims to convert Escherichia coli to accumulate magnetite, which can further be coupled with drug delivery modules. The authors design magnetite accumulating bacterial machines using genetic circuitries hiring Mms6 with iron-binding activity and essential in magnetite crystal formation. The work demonstrates that the combinatorial effect of Mms6 with ferroxidase, iron transporter protein, and material binding peptide enhances the paramagnetic behavior of the cells in magnetic resonance imaging (MRI) measurements. Cellular machines are also engineered to display Mms6 peptide on the cell surface via an autotransporter protein that shows augmented MRI performance. The findings are promising for endowing a probiotic bacterium, able to accumulate magnetite intracellularly or extracellularly, serving as a theranostics agent for cancer diagnostics via MRI scanning and hyperthermia treatment.


Assuntos
Meios de Contraste , Nanopartículas de Magnetita , Bactérias/metabolismo , Meios de Contraste/química , Óxido Ferroso-Férrico , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Peptídeos
11.
ACS Infect Dis ; 8(7): 1253-1264, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35426678

RESUMO

The COVID-19 (coronavirus disease-19) pandemic affected more than 180 million people around the globe, causing more than five million deaths as of January 2022. SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the new coronavirus, has been identified as the primary cause of the infection. The number of vaccinated people is increasing; however, prophylactic drugs are highly demanded to ensure secure social contact. A number of drug molecules have been repurposed to fight against SARS-CoV-2, and some of them have been proven to be effective in preventing hospitalization or ICU admissions. Here, we demonstrated griffithsin (GRFT), a lectin protein, to block the entry of SARS-CoV-2 and its variants, Delta and Omicron, into the Vero E6 cell lines and IFNAR-/- mouse models by attaching to the spike protein of SARS-CoV-2. Given the current mutation frequency of SARS-CoV-2, we believe that GRFT protein-based drugs will have a high impact in preventing the transmission of both the Wuhan strain as well as any other emerging variants, including Delta and Omicron variants, causing the high-speed spread of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , Humanos , Lectinas , Camundongos , Pandemias
12.
Biosensors (Basel) ; 12(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35200383

RESUMO

Rapid progress in the genetic circuit design enabled whole-cell biosensors (WCBs) to become prominent in detecting an extensive range of analytes with promise in many fields, from medical diagnostics to environmental toxicity assessment. However, several drawbacks, such as high background signal or low precision, limit WCBs to transfer from proof-of-concept studies to real-world applications, particularly for heavy metal toxicity monitoring. For an alternative WCB module design, we utilized Bxb1 recombinase that provides tight control as a switch to increase dose-response behavior concerning leakiness. The modularity of Bxb1 recombinase recognition elements allowed us to combine an engineered semi-specific heat shock response (HSR) promoter, sensitive to stress conditions including toxic ions such as cadmium, with cadmium resistance regulatory elements; a cadmium-responsive transcription factor and its cognitive promoter. We optimized the conditions for the recombinase-based cadmium biosensor to obtain increased fold change and shorter response time. This system can be expanded for various heavy metals to make an all-in-one type of WCB, even using semi-specific parts of a sensing system.


Assuntos
Técnicas Biossensoriais , Metais Pesados , Cádmio , Regiões Promotoras Genéticas , Recombinases
13.
Anal Chem ; 93(28): 9719-9727, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34192453

RESUMO

SARS-CoV-2 is a human pathogen and the main cause of COVID-19 disease, announced as a global pandemic by the World Health Organization. COVID-19 is characterized by severe conditions, and early diagnosis can make dramatic changes for both personal and public health. Low-cost, easy-to-use diagnostic capabilities can have a very critical role in controlling the transmission of the disease. Here, we are reporting a state-of-the-art diagnostic tool developed with an in vitro synthetic biology approach by employing engineered de novo riboregulators. Our design coupled with a home-made point-of-care device can detect and report the presence of SARS-CoV-2-specific genes. The presence of SARS-CoV-2-related genes triggers the translation of sfGFP mRNAs, resulting in a green fluorescence output. The approach proposed here has the potential of being a game changer in SARS-CoV-2 diagnostics by providing an easy-to-run, low-cost diagnostic capability.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito
14.
Biomater Sci ; 9(10): 3650-3661, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33710212

RESUMO

Glycosylation is a crucial post-translational modification for a wide range of functionalities. Adhesive protein-based biomaterials in nature rely on heavily glycosylated proteins such as spider silk and mussel adhesive proteins. Engineering protein-based biomaterials genetically enables desired functions and characteristics. Additionally, utilization of glycosylation for biomaterial engineering can expand possibilities by including saccharides to the inventory of building blocks. Here, de novo glycosylation of Bacillus subtilis amyloid-like biofilm protein TasA using a Campylobacter jejuni glycosylation circuit is proposed to be a novel biomaterial engineering method for increasing adhesiveness of TasA fibrils. A C. jejuni glycosylation motif is genetically incorporated to tasA gene and expressed in Escherichia coli containing the C. jejuni pgl protein glycosylation pathway. Glycosylated TasA fibrils indicate enhanced adsorption on the gold surface without disruption of fibril formation. Our findings suggest that N-linked glycosylation can be a promising tool for engineering protein-based biomaterials specifically regarding adhesion.


Assuntos
Materiais Biocompatíveis , Campylobacter jejuni , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Campylobacter jejuni/metabolismo , Glicosilação
15.
Colloids Surf B Biointerfaces ; 199: 111547, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33385820

RESUMO

HYPOTHESIS: Self-assembling protein subunits hold great potential as biomaterials with improved functions. Among the self-assembled protein structures functional amyloids are promising unique properties such as resistance to harsh physical and chemical conditions their mechanical strength, and ease of functionalization. Curli proteins, which are functional amyloids of bacterial biofilms can be programmed as intelligent biomaterials. EXPERIMENTS: In order to obtain controllable curli based biomaterials for biomedical applications, and to understand role of each of the curli forming monomeric proteins (namely CsgA and CsgB from Escherichia coli) we characterized their binding kinetics to gold, hydroxyapatite, and silica surfaces. FINDINGS: We demonstrated that CsgA, CsgB, and their equimolar mixture have different binding strengths for different surfaces. On hydroxyapatite and silica surfaces, CsgB is the crucial element that determines the final adhesiveness of the CsgA-CsgB mixture. On the gold surface, on the other hand, CsgA controls the behavior of the mixture. Those findings uncover the binding behavior of curli proteins CsgA and CsgB on different biomedically valuable surfaces to obtain a more precise control on their adhesion to a targeted surface.


Assuntos
Proteínas de Escherichia coli , Amiloide , Proteínas de Bactérias/genética , Biofilmes , Escherichia coli , Proteínas de Escherichia coli/genética , Subunidades Proteicas
16.
Biosens Bioelectron ; 178: 113028, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33508538

RESUMO

Whole cell biosensors (WCBs) have become prominent in many fields from environmental analysis to biomedical diagnostics thanks to advanced genetic circuit design principles. Despite increasing demand on cost effective and easy-to-use assessment methods, a considerable amount of WCBs retains certain drawbacks such as long response time, low precision and accuracy. Here, we utilized a neural network-based architecture to improve the features of WCBs and engineered a gold sensing WCB which has a long response time (18 h). Two Long-Short Term-Memory (LSTM)-based networks were integrated to assess both ON/OFF and concentration dependent states of the sensor output, respectively. We demonstrated that binary (ON/OFF) network was able to distinguish between ON/OFF states as early as 30 min with 78% accuracy and over 98% in 3 h. Furthermore, when analyzed in analog manner, we demonstrated that network can classify the raw fluorescence data into pre-defined analyte concentration groups with high precision (82%) in 3 h. This approach can be applied to a wide range of WCBs and improve rapidness, simplicity and accuracy which are the main challenges in synthetic biology enabled biosensing.


Assuntos
Técnicas Biossensoriais , Redes Reguladoras de Genes , Aprendizado de Máquina , Redes Neurais de Computação , Biologia Sintética
17.
Heliyon ; 6(9): e05116, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33015402

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently a global pandemic with unprecedented public health, economic and social impact. The development of effective mitigation strategies, therapeutics and vaccines relies on detailed genomic and biological characterization of the regional viruses. This study was carried out to isolate SARS-CoV-2 viruses circulating in Anatolia, and to investigate virus propagation in frequently-used cells and experimental animals. We obtained two SARS-CoV-2 viruses from nasopharngeal swabs of confirmed cases in Vero E6 cells, visualized the virions using atomic force and scanning electron microscopy and determined size distribution of the particles. Viral cytopathic effects on Vero E6 cells were initially observed at 72 h post-inoculation and reached 90% of the cells on the 5th day. The isolates displayed with similar infectivity titers, time course and infectious progeny yields. Genome sequencing revealed the viruses to be well-conserved, with less than 1% diversity compared to the prototype virus. The analysis of the viral genomes, along with the available 62 complete genomes from Anatolia, showed limited diversity (up to 0.2% on deduced amino acids) and no evidence of recombination. The most prominent sequence variation was observed on the spike protein, resulting in the substitution D614G, with a prevalence of 56.2%. The isolates produced non-fatal infection in the transgenic type I interferon knockout (IFNAR-/-) mice, with varying neutralizing antibody titers. Hyperemia, regional consolidation and subpleural air accumulation was observed on necropsy, with similar histopathological and immunohistochemistry findings in the lungs, heart, stomach, intestines, liver, spleen and kidneys. Peak viral loads were detected in the lungs, with virus RNA present in the kidneys, jejunum, liver, spleen and heart. In conclusion, we characterized two local isolates, investigated in vitro growth dynamics in Vero E6 cells and identified IFNAR-/- mice as a potential animal model for SARS-CoV-2 experiments.

18.
ACS Synth Biol ; 8(10): 2404-2417, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31536326

RESUMO

Biocompatibility assessment of nanomaterials has been of great interest due to their potential toxicity. However, conventional biocompatibility tests fall short of providing a fast toxicity report. We developed a whole cell based biosensor to track biocompatibility of nanomaterials with the aim of providing fast feedback to engineer them with lower toxicity levels. We engineered promoters of four heat shock response (HSR) proteins utilizing synthetic biology approaches. As an initial design, a reporter coding gene was cloned downstream of the selected promoter regions. Initial results indicated that native heat shock protein (HSP) promoter regions were not very promising to generate signals with low background signals. Introducing riboregulators to native promoters eliminated unwanted background signals almost entirely. Yet, this approach also led to a decrease in expected sensor signal upon stress treatment. Thus, a repression based genetic circuit, inspired by the HSR mechanism of Mycobacterium tuberculosis, was constructed. These genetic circuits could report the toxicity of quantum dot nanoparticles in 1 h. Our designed nanoparticle toxicity sensors can provide quick reports, which can lower the demand for additional experiments with more complex organisms.


Assuntos
Redes Reguladoras de Genes/genética , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Nanoestruturas/toxicidade , Técnicas Biossensoriais/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Genes Reporter/genética , Resposta ao Choque Térmico/efeitos dos fármacos , Temperatura Alta , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Biologia Sintética/métodos
19.
Adv Mater ; 31(39): e1902888, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31402516

RESUMO

Distinct spatial patterning of naturally produced materials is observed in many cellular structures and even among communities of microorganisms. Reoccurrence of spatially organized materials in all branches of life is clear proof that organization is beneficial for survival. Indeed, organisms can trick the evolutionary process by using organized materials in ways that can help the organism to avoid unexpected conditions. To expand the toolbox for synthesizing patterned living materials, Boolean type "AND" and "OR" control of curli fibers expression is demonstrated using recombinases. Logic gates are designed to activate the production of curli fibers. The gates can be used to record the presence of input molecules and give output as CsgA expression. Two different curli fibers (CsgA and CsgA-His-tag) production are then selectively activated to explore distribution of monomers upon coexpression. To keep track of the composition of fibers, CsgA-His-tag proteins are labeled with nickel-nitrilotriacetic acid (Ni-NTA-) conjugated gold nanoparticles. It is observed that an organized living material can be obtained upon inducing the coexpression of different CsgA fibers. It is foreseen that living materials with user-defined curli composition hold great potential for the development of living materials for many biomedical applications.


Assuntos
Amiloide/química , Computadores Moleculares , Lógica , Nanofibras/química , Nanotecnologia/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Engenharia Genética , Recombinases/genética
20.
ACS Synth Biol ; 8(9): 2152-2162, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31419103

RESUMO

Genetically controlled synthetic biosystems are being developed to create nanoscale materials. These biosystems are modeled on the natural ability of living cells to synthesize materials: many organisms have dedicated proteins that synthesize a wide range of hard tissues and solid materials, such as nanomagnets and biosilica. We designed an autonomous living material synthesizing system consisting of engineered cells with genetic circuits that synthesize nanomaterials. The circuits encode a nanomaterial precursor-sensing module (sensor) coupled with a materials synthesis module. The sensor detects the presence of cadmium, gold, or iron ions, and this detection triggers the synthesis of the related nanomaterial-nucleating extracellular matrix. We demonstrate that when engineered cells sense the availability of a precursor ion, they express the corresponding extracellular matrix to form the nanomaterials. This proof-of-concept study shows that endowing cells with synthetic genetic circuits enables nanomaterial synthesis and has the potential to be extended to the synthesis of a variety of nanomaterials and biomaterials using a green approach.


Assuntos
Redes Reguladoras de Genes , Nanoestruturas/química , Biologia Sintética/métodos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Técnicas Biossensoriais , Escherichia coli/química , Escherichia coli/metabolismo , Metais/química , Microscopia Eletrônica de Varredura , Nanofibras/análise , Nanofibras/química , Nanoestruturas/análise , Peptídeos/genética , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA